

img2pdf/slack-desc

HOW TO EDIT THIS FILE:
The "handy ruler" below makes it easier to edit a package description.
Line up the first '|' above the ':' following the base package name, and
the '|' on the right side marks the last column you can put a character in.
You must make exactly 11 lines for the formatting to be correct. It's also
customary to leave one space after the ':' except on otherwise blank lines.

 |-----handy-ruler--|
img2pdf: img2pdf (Lossless conversion of raster images to PDF.)
img2pdf:
img2pdf: A Python package to losslessly convert raster images to PDF.
img2pdf:
img2pdf: Created and currently maintained by josch
img2pdf: https://pypi.org/user/josch/
img2pdf:
img2pdf: Homepage: https://gitlab.mister-muffin.de/josch/img2pdf
img2pdf:
img2pdf:
img2pdf:

img2pdf/README

img2pdf

Lossless conversion of raster images to PDF. You should use img2pdf if
your priorities are (in this order):

 always lossless: the image embedded in the PDF will always have the
exact same color information for every pixel as the input small: if
possible, the difference in filesize between the input image and the
output PDF will only be the overhead of the PDF container itself fast:
if possible, the input image is just pasted into the PDF document as-is
without any CPU hungry re-encoding of the pixel data

Conventional conversion software (like ImageMagick) would either:

 not be lossless because lossy re-encoding to JPEG not be small
because using wasteful flate encoding of raw pixel data not be fast
because input data gets re-encoded

Another advantage of not having to re-encode the input (in most common
situations) is, that img2pdf is able to handle much larger input than
other software, because the raw pixel data never has to be loaded into
memory.

The following table shows how img2pdf handles different input depending
on the input file format and image color space. Format
Colorspace 	Result JPEG 	any 	direct JPEG2000 	any
direct PNG (non-interlaced) 	any 	direct TIFF (CCITT Group 4)
monochrome 	direct any 	any except CMYK and monochrome 	PNG
Paeth any 	monochrome 	CCITT Group 4 any 	CMYK 	flate

For JPEG, JPEG2000, non-interlaced PNG and TIFF images with CCITT Group
4 encoded data, img2pdf directly embeds the image data into the PDF
without re-encoding it. It thus treats the PDF format merely as a
container format for the image data. In these cases, img2pdf only
increases the filesize by the size of the PDF container (typically
around 500 to 700 bytes). Since data is only copied and not re-encoded,
img2pdf is also typically faster than other solutions for these input
formats.

For all other input types, img2pdf first has to transform the pixel data
to make it compatible with PDF. In most cases, the PNG Paeth filter is
applied to the pixel data. For monochrome input, CCITT Group 4 is used
instead. Only for CMYK input no filter is applied before finally
applying flate compression. Usage

The images must be provided as files because img2pdf needs to seek in
the file descriptor.

If no output file is specified with the -o/--output option, output will
be done to stdout. A typical invocation is:

$ img2pdf img1.png img2.jpg -o out.pdf

The detailed documentation can be accessed by running:

$ img2pdf --help

Bugs

 If you find a JPEG, JPEG2000, PNG or CCITT Group 4 encoded TIFF file
that, when embedded into the PDF cannot be read by the Adobe Acrobat
Reader, please contact me.

 I have not yet figured out how to determine the colorspace of
JPEG2000 files. Therefore JPEG2000 files use DeviceRGB by default. For
JPEG2000 files with other colorspaces, you must explicitly specify it
using the --colorspace option.

 Input images with alpha channels are not allowed. PDF only supports
transparency using binary masks but is unable to store 8-bit
transparency information as part of the image itself. But img2pdf will
always be lossless and thus, input images must not carry transparency
information.

 img2pdf uses PIL (or Pillow) to obtain image meta data and to
convert the input if necessary. To prevent decompression bomb denial of
service attacks, Pillow limits the maximum number of pixels an input
image is allowed to have. If you are sure that you know what you are
doing, then you can disable this safeguard by passing the
--pillow-limit-break option to img2pdf. This allows one to process even
very large input images.

Installation

On a Debian- and Ubuntu-based systems, img2pdf can be installed from the
official repositories:

$ apt install img2pdf

If you want to install it using pip, you can run:

$ pip3 install img2pdf

If you prefer to install from source code use:

$ cd img2pdf/ $ pip3 install .

To test the console script without installing the package on your
system, use virtualenv:

$ cd img2pdf/ $ virtualenv ve $ ve/bin/pip3 install .

You can then test the converter using:

$ ve/bin/img2pdf -o test.pdf src/tests/test.jpg

For Microsoft Windows users, PyInstaller based .exe files are produced
by appveyor. If you don't want to install Python before using img2pdf
you can head to appveyor and click on "Artifacts" to download the latest
version: https://ci.appveyor.com/project/josch/img2pdf GUI

There exists an experimental GUI with all settings currently disabled.
You can directly convert images to PDF but you cannot set any options
via the GUI yet. If you are interested in adding more features to the
PDF, please submit a merge request. The GUI is based on tkinter and
works on Linux, Windows and MacOS.

Library

The package can also be used as a library:

import img2pdf

opening from filename with open("name.pdf","wb") as f:
f.write(img2pdf.convert('test.jpg'))

opening from file handle with open("name.pdf","wb") as f1,
open("test.jpg") as f2: f1.write(img2pdf.convert(f2))

using in-memory image data with open("name.pdf","wb") as f:
f.write(img2pdf.convert("\x89PNG...")

multiple inputs (variant 1) with open("name.pdf","wb") as f:
f.write(img2pdf.convert("test1.jpg", "test2.png"))

multiple inputs (variant 2) with open("name.pdf","wb") as f:
f.write(img2pdf.convert(["test1.jpg", "test2.png"]))

convert all files ending in .jpg inside a directory dirname =
"/path/to/images" with open("name.pdf","wb") as f: imgs = [] for fname
in os.listdir(dirname): if not fname.endswith(".jpg"): continue path =
os.path.join(dirname, fname) if os.path.isdir(path): continue
imgs.append(path) f.write(img2pdf.convert(imgs))

convert all files ending in .jpg in a directory and its subdirectories
dirname = "/path/to/images" with open("name.pdf","wb") as f: imgs = []
for r, _, f in os.walk(dirname): for fname in f: if not
fname.endswith(".jpg"): continue imgs.append(os.path.join(r, fname))
f.write(img2pdf.convert(imgs))

convert all files matching a glob import glob with
open("name.pdf","wb") as f:
f.write(img2pdf.convert(glob.glob("/path/to/*.jpg")))

writing to file descriptor with open("name.pdf","wb") as f1,
open("test.jpg") as f2: img2pdf.convert(f2, outputstream=f1)

specify paper size (A4) a4inpt =
(img2pdf.mm_to_pt(210),img2pdf.mm_to_pt(297)) layout_fun =
img2pdf.get_layout_fun(a4inpt) with open("name.pdf","wb") as f:
f.write(img2pdf.convert('test.jpg', layout_fun=layout_fun))

Comparison to ImageMagick

Create a large test image:

$ convert logo: -resize 8000x original.jpg

Convert it into PDF using ImageMagick and img2pdf:

$ time img2pdf original.jpg -o img2pdf.pdf $ time convert original.jpg
imagemagick.pdf

Notice how ImageMagick took an order of magnitude longer to do the
conversion than img2pdf. It also used twice the memory.

Now extract the image data from both PDF documents and compare it to the
original:

$ pdfimages -all img2pdf.pdf tmp $ compare -metric AE original.jpg
tmp-000.jpg null: 0 $ pdfimages -all imagemagick.pdf tmp $ compare
-metric AE original.jpg tmp-000.jpg null: 118716

To get lossless output with ImageMagick we can use Zip compression but
that unnecessarily increases the size of the output:

$ convert original.jpg -compress Zip imagemagick.pdf $ pdfimages -all
imagemagick.pdf tmp $ compare -metric AE original.jpg tmp-000.png null:
0 $ stat --format="%s %n" original.jpg img2pdf.pdf imagemagick.pdf
1535837 original.jpg 1536683 img2pdf.pdf 9397809 imagemagick.pdf

Comparison to pdfLaTeX

pdfLaTeX performs a lossless conversion from included images to PDF by
default. If the input is a JPEG, then it simply embeds the JPEG into the
PDF in the same way as img2pdf does it. But for other image formats it
uses flate compression of the plain pixel data and thus needlessly
increases the output file size:

$ convert logo: -resize 8000x original.png $ cat << END > pdflatex.tex
\documentclass{article} \usepackage{graphicx} \begin{document}
\includegraphics{original.png} \end{document} END $ pdflatex
pdflatex.tex $ stat --format="%s %n" original.png pdflatex.pdf 4500182
original.png 9318120 pdflatex.pdf

Comparison to podofoimg2pdf

Like pdfLaTeX, podofoimg2pdf is able to perform a lossless conversion
from JPEG to PDF by plainly embedding the JPEG data into the pdf
container. But just like pdfLaTeX it uses flate compression for all
other file formats, thus sometimes resulting in larger files than
necessary.

$ convert logo: -resize 8000x original.png $ podofoimg2pdf out.pdf
original.png stat --format="%s %n" original.png out.pdf 4500181
original.png 9335629 out.pdf

It also only supports JPEG, PNG and TIF as input and lacks many of the
convenience features of img2pdf like page sizes, borders, rotation and
metadata. Comparison to Tesseract OCR

Tesseract OCR comes closest to the functionality img2pdf provides. It is
able to convert JPEG and PNG input to PDF without needlessly increasing
the filesize and is at the same time lossless. So if your input is JPEG
and PNG images, then you should safely be able to use Tesseract instead
of img2pdf. For other input, Tesseract might not do a lossless
conversion. For example it converts CMYK input to RGB and removes the
alpha channel from images with transparency. For multipage TIFF or
animated GIF, it will only convert the first frame.

OPTIONAL:

python3

img2pdf/img2pdf.info

PRGNAM="img2pdf"
VERSION="0.4.0"
HOMEPAGE="https://gitlab.mister-muffin.de/josch/img2pdf"
DOWNLOAD="https://files.pythonhosted.org/packages/80/ed/5167992abaf268f5a5867e974d9d36a8fa4802800898ec711f4e1942b4f5/img2pdf-0.4.0.tar.gz"
MD5SUM="e4e3510dd301e50a5d03739bf9991a86"
DOWNLOAD_x86_64=""
MD5SUM_x86_64=""
REQUIRES=""
MAINTAINER="Alan Aversa"
EMAIL="alan.aveNOrsaSP@AMcox.net (remove NO and SPAM)"

img2pdf/img2pdf.SlackBuild

#!/bin/sh

Slackware build script for img2pdf

Copyright 2020 Alan Aversa
All rights reserved.
#
Redistribution and use of this script, with or without modification, is
permitted provided that the following conditions are met:
#
1. Redistributions of this script must retain the above copyright
notice, this list of conditions and the following disclaimer.
#
THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

PRGNAM=img2pdf
VERSION=${VERSION:-0.4.0}
BUILD=${BUILD:-1}
TAG=${TAG:-_SBo}		
if [-z "$ARCH"]; then
 case "$(uname -m)" in
 i?86) ARCH=i586 ;;
 arm*) ARCH=arm ;;
 *) ARCH=$(uname -m) ;;
 esac
fi

CWD=$(pwd)
TMP=${TMP:-/tmp/SBo}
PKG=$TMP/package-$PRGNAM
OUTPUT=${OUTPUT:-/tmp}		
if ["$ARCH" = "i586"]; then
 SLKCFLAGS="-O2 -march=i586 -mtune=i686"
 LIBDIRSUFFIX=""
elif ["$ARCH" = "i686"]; then
 SLKCFLAGS="-O2 -march=i686 -mtune=i686"
 LIBDIRSUFFIX=""
elif ["$ARCH" = "x86_64"]; then
 SLKCFLAGS="-O2 -fPIC"
 LIBDIRSUFFIX="64"
else
 SLKCFLAGS="-O2"
 LIBDIRSUFFIX=""
fi

set -e

rm -rf $PKG
mkdir -p $TMP $PKG $OUTPUT
cd $TMP
rm -rf $PRGNAM-$VERSION
tar xvf $CWD/$PRGNAM-$VERSION.tar.gz
cd $PRGNAM-$VERSION
chown -R root:root .
find -L . \
 \(-perm 777 -o -perm 775 -o -perm 750 -o -perm 711 -o -perm 555 \
 -o -perm 511 \) -exec chmod 755 {} \; -o \
 \(-perm 666 -o -perm 664 -o -perm 640 -o -perm 600 -o -perm 444 \
 -o -perm 440 -o -perm 400 \) -exec chmod 644 {} \;

sed -i "s/self.qmake_bin = 'qmake'/self.qmake_bin = 'qmake-qt5'/" setup.py

if $(python3 -c 'import sys' 2>/dev/null); then
 python3 setup.py install --root=$PKG
else
 python setup.py install --root=$PKG
fi

find $PKG -print0 | xargs -0 file | grep -e "executable" -e "shared object" | grep ELF \
 | cut -f 1 -d : | xargs strip --strip-unneeded 2> /dev/null || true

mkdir -p $PKG/usr/doc/$PRGNAM-$VERSION
cat $CWD/$PRGNAM.SlackBuild > $PKG/usr/doc/$PRGNAM-$VERSION/$PRGNAM.SlackBuild

mkdir -p $PKG/install
cat $CWD/slack-desc > $PKG/install/slack-desc

cd $PKG
/sbin/makepkg -l y -c n $OUTPUT/$PRGNAM-$VERSION-$ARCH-$BUILD$TAG.${PKGTYPE:-tgz}

